

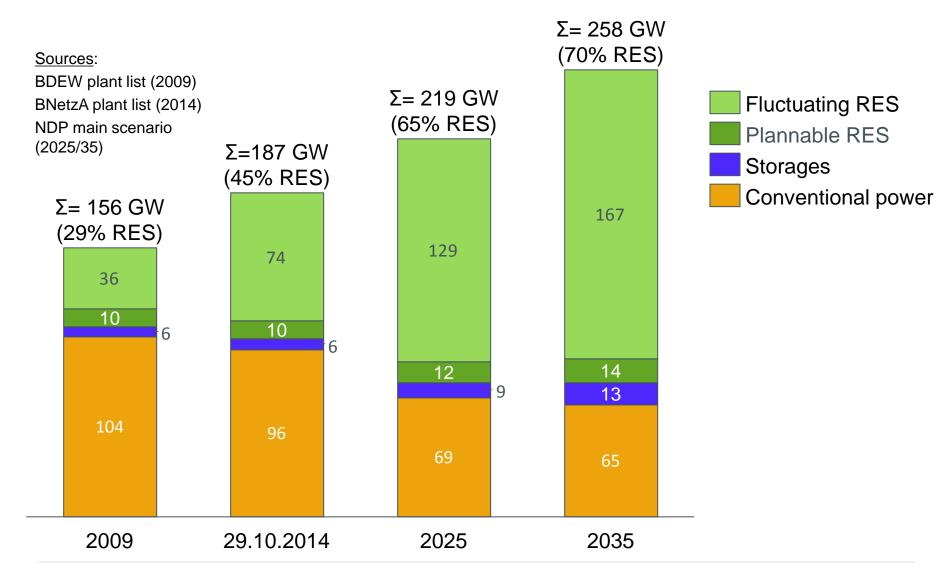
Storages between flexibility options, capacity contributions and customer trends

Matthias Müller-Mienack Consultant to the Chief Market and Operation Officer 50Hertz Transmission GmbH

ERA-NET SMART GRIDS PLUS SCOPING WORKSHOP 2015 Malmö, 28th October 2015

Professional steps:

- 2005-2006: Grid planner at Vattenfall Europe Transmission GmbH (VE-T)
- 2007: Project leader for offshore windfarm grid connection at VE-T
- 2007-2011: Head of European Grid Concepts at VE-T \rightarrow 50Hertz
- 2009-2011: Convenor of ENTSO-E Working Group 2050 Electricity Highways
- 2011-2012: Head of Corporate Strategy at 50Hertz, Elia Group
- As of 2013: Technical Head at GridLab GmbH, Elia Group


Involvement in European projects:

- FP 7 projects TWENTIES, eHighways2050
- Strategic Research Agenda from 2008 to 2030, European Wind Energy Technology Platform, EWEA
- European Electricity Grid Initiative (SET plan)
- Ten-Year Network Development Plan (TYNDP), ENTSO-E
- Study Roadmap towards Modular Development Plan on pan-European Electricity System 2050 (ModPEHS 2050), ENTSO-E

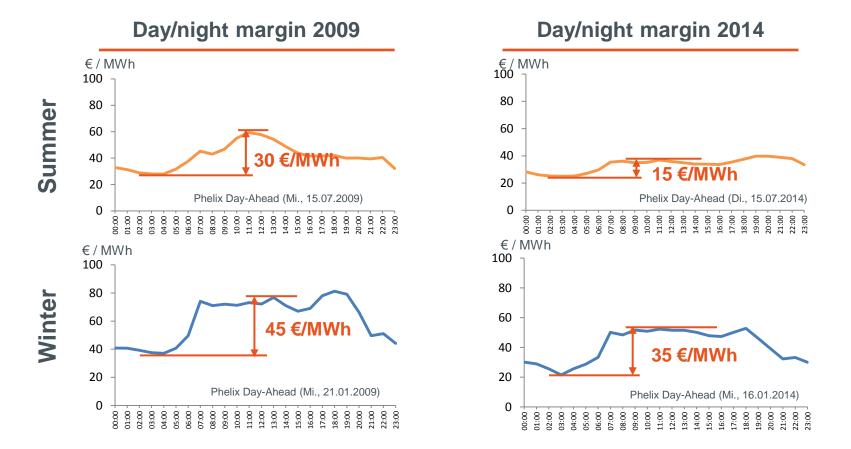
German Decarbonization Pathway

Storages between flexibility options, capacity contributions and customer trends

Drivers for storage application in electricity system (1/2)

driver for storage requirement	applications		user	observation
A Flexibility requirement in the electricity system	System servicesControl power	15 min	 Transmission System Operator Distribution System Operator 	 Potentially rising demand But: various new technologies & player result in strong competition
Flexibility requirement in the electricity market	 Generation optimization Market optimization (balancing group coordination) arbitrage 	1 hour/day	 Wholesale market Generators (conventional and renewable) 	 Price spreads get significantly lower and will stay low in the next years Economic efficiency of existing storages is difficult to reach
B Capacity contribution	 Reduction of RES curtailment Capacity contribution through storages 	1 month	 Wholesale market 	 The demand of usage of the surplus of renewable energy will increase in order to further enhance the degree of decarbonization

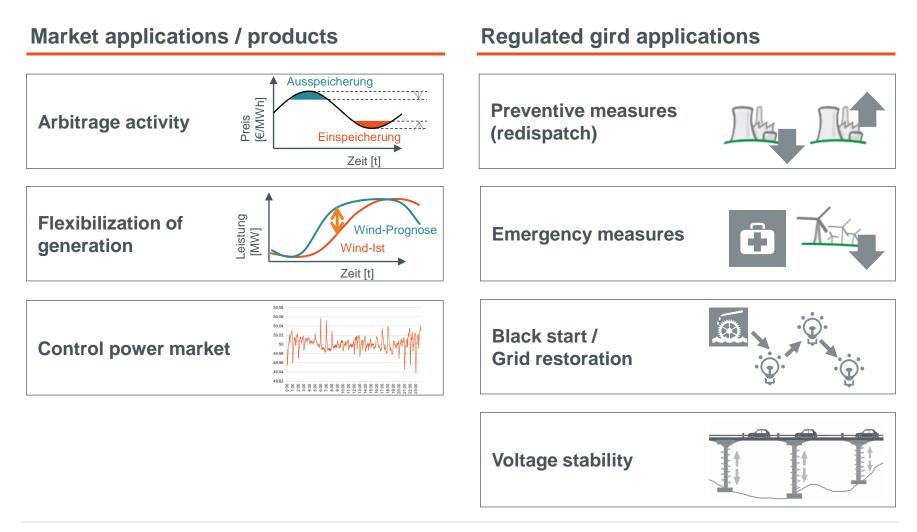
Drivers for storage application in electricity system (2/2)


driver for storage requirement	applications	user	observation
C Avoidance of grid investments	 Less line extensions because of peak shaving vs. 	 Distribution System Operator 	 Less extensions in the < 30 kV line because of storage No effect on the >110 kV line
D Optimization of personal consumption (prosumer)	 Batteries as addition to power generation system Incentive mechanism: direct or indirect subsidies Lifestyle? 	 Industrial, trade and household clients 	 Positive Business Case by implementation of distributed storage systems Dependent on grid tariff structure and cost allocation
E transportation models especially e-mobility	 Batteries for e-mobility Power-to-Gas for gas mobility Dependent on lifestyle 	 consumer 	 Breakthrough is not yet visible Dependent on fuel prices and subsidy regimes

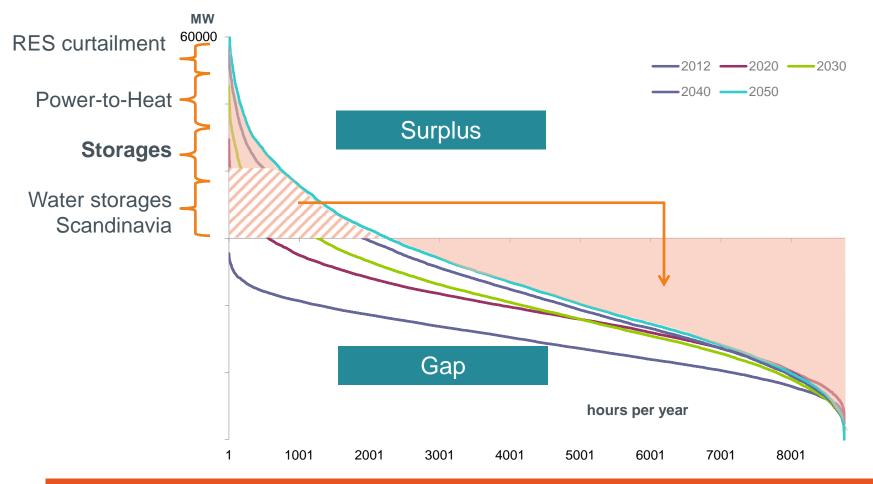
Storages between flexibility options, capacity contributions and customer trends

Flexibility requirement: Price spreads of the energy market became significant lower in Germany (matter of market design)

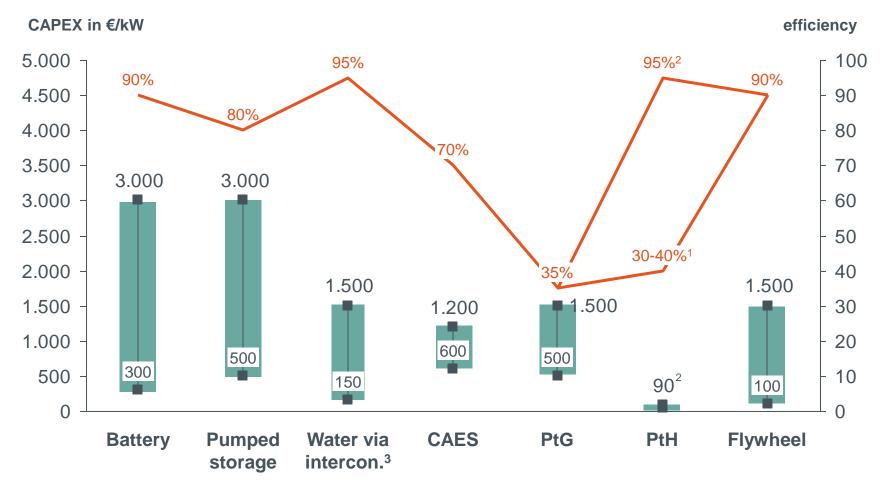
Presently, pure arbitrage activity isn't efficient for pumped storage -Revenues from system services can't compensate for decreasing margins


Smart Grids Plus

ERA-Net


Pumped storage: Currently no Business Case in Germany despite varied market and grid applications

New storages in competition with various flexibility options


Because of the high CAPEX and the limited storage capacity the indirect storage through interconnectors is more efficient

Storages between flexibility options, capacity contributions and customer trends Source: World Energy Council / Prognos; 2012 8 / 29

Trade-off between CAPEX amount and efficiency is significant for the storage assessment

¹including reconversion into electricity; ²heat-only generation; ³ costs for interconnector (range 200 to 400km, AC and DC)

Storages between flexibility options, capacity contributions and customer trends

Because of the increasing competition with various cost-effective alternatives, new storage technologies for performance of control power are more a niche application

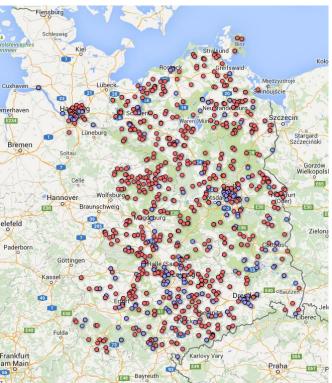
In the medium and long term, the classical arbitrage activity of hourly/daily storages offers no business perspective for consisting and new storages

From today's perspective, grid development and exploitation of indirect water storages in Scandinavia and in the Alpine region is a cost-effective solution for the next 10 – 20 years

Through e-mobility expected cost degression for batteries. This could also result in applications in the electricity market (optimization of personal consumption, avoidance of grid development, lifestyle product) Special research attention not necessarily on storage technologies but on pooling concepts for control power push into the market

Market entry of new players with mainly low opportunity costs for control power:

Biomass:


ERA-Net

- currently installed 8000 MW potentially applicable for control power
- e. g. permitted short-time operation > 120%
- Aggregators for control power

Smart Grids Plus

- Load management for industrial customer
- Control power pool for small systems

Thank you for your attention!

Dr.-Ing. Matthias Müller-Mienack Consultant to the Chief Market and Operation Officer

50Hertz Transmission GmbH Eichenstraße 3A 12435 Berlin Germany

+49 30 - 5150 – 2701 matthias.mueller-mienack@50hertz.com

www.50hertz.com

Dr.-Ing. Matthias Müller-Mienack Technical Head

GridLab GmbH Hubertstraße 24 03044 Cottbus Germany

+49 355 - 5 299 - 68 01 matthias.mueller-mienack@gridlab.de

www.gridlab.de